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Abstract

A numerical method for the computation of the singular behavior of the
solution of the Laplace equation is proposed. It is shown ghat the accuracy
of the computed stress intensity factor by the h,p and h-p version of the
finite element method has the same order as the square of the error of the

solution measured in the energy norm. Numerical examples are given.




1. Introduction

It is well known that the solution of elliptic partial differential
equations is singular in the neighborhood of the edges and the vertices of the
démain of definition Q<:R3. The character of the solution can be described
by the decomposition of the solution in singular and regular parts (see e.g.
[D],(G1], [G2], [Kol, [P}, [PS1], [PS2]). Singular behavior of the solution
is of large importance in many applications. It is, for example, directly
related to the problems of fracture mechanics. Hence the numerical deter-
mination of the parameters of the singular behavior of the solution is of
great interest, for example, in problems of structural mechanics.

The major tool of computational structure mechanics is the finite element
method. In the 3 dimensional analysis, one of the most laborious parts of the
finite element computation is the mesh generation. Hence the method for the
determination of the singular parts of the solution should be fully integrated
with the data and algorithm used for solving the boundary value problem of the
partial differential generation of interest. 1In the engineering and
mathematical literature, many methods for the computation of stress intensity
factors were proposed. Most methods use different approaches for the approxi-
mation of the solution, the approximation of singularity functions (and
ad joint singularity functions), and the extraction of the intensity factors.

Our analysis addresses the error of the complete approach, i.e., it
includes the error of the finite element approximation, the error of the
computed singularity function, and the extraction of the vertex intensity
factors. The method analyzed here is partially related to the ideas in [LN].
There, however, a different eigenvalue problem was used and no error analysis

was performed.




In this paper we propose and analyze such method for the characteristiza-
tion of the singularity in the neighborhood of the vertex of the domain
f1cR. We restrict ourselves here to the Laplace equation and polyhedral
domains only. This paper is the first in a series. The other papers will
deal with elasticity problems, which are of especially large interest in
engineering. This method was implemented in the program STRIPE [S] and a
survey of the results in connection with the analysis of complex airplane
structures is given in [A].

In the neighborhood of a vertex the solution u of the boundary value

probiem can be written in the form (see (2.11))

(1.1) u(x) = uo(x) + ZCJSJ(X)

where CJ depends (globally) on the solution and Sj(x) depends on the

geometry only. The so-called stress intensity functions Sj(x) as well as the

so-called stress intensity factors C can be computed only numerically. The

J

function u0 in (1.1) vanishes faster towards the vertex than the functions

SJ(x) (see e.g. (2.11b) for exact formulation).
The solution u(x) is computed approximately by the finite element
method. The error of the finite element solution uq satisfies an asymptotic

convergence estimate of the form
(1.2) Huq-lﬂlScF(N(q))

where |+|] 1is typically the energy norm, N(q) is the number of used degrees
of freedom and F({) 1is a decreasing function depending on the used method,
e.g., h, por h-p version. In practice we usually see in (1.2) approximate
equality, i.e. = instead £ . We will show in this paper that the stress
intensity factors can be computed with the accuracy F(N(q))z, i.e., denoting

by ngl the finite element approximation of C., we get

i




[q]

-c i sc F(N(q))2

where C 1is independent of q.

This is one of the major results of this paper.

Section 2 gives the formulation of the problem. Section 3 introduces a
Steklov problem and shows that the functions SJ in (1.1) are solutions of the
problem. In Section 4 we derive a formula for the extraction of the exact
stress intensity factors from the exact solution ..

Section 5 elaborates on the finite element method and formulates some
assumption about the meshes used. It shows that these assumptions are valid
for the standard h, p and h-p versions of the finite element method.

Section 6 elaborates on the numerical computation of the function Sj
in (1.1) and gives the estimates of the error.

Section 7 describes the numerical computation of the stress intensity
factors CJ and proves the error estimate. It shows that the accuracy or
ng] is of the same order as the square of the error of the finite element
solution uq when measured in the energy norm.

Section 8 presents an illustrative example computed by the p-version of

the finite element method implemented in the program STRIPE.




2. Formulation of the problem
L
Let QcR be a polyhedron with the boundary dQ = U Fi =T, where T
=1
are the planar (open) faces of 48Q. By Vi,i = 0,1,:--,m we denote the
vertices of Q2 and will assume that the vertex V = VO is located in the

origin (i.e. V0 = 0). By Ej,j =1,2,-,n we denote the (open) edges of Q.

i

Ei'i = t.---,no, are all the edges containing the vertex VO' Let

3 = min{dist(Ei,Vo)}, L= n0-+1,---,n. Further by Qp,p:>0 we denote the

open ball with the center in V0 and radius p. Set R = min(l.% ) then

obviously QZRtWQ = Qer\K where K 1is the infinite cone coinciding with

Q@ 1in the neighborhood of VO' For any p<3 we denote Qp = Qplwn, Fg =

8QnQ, T =TnQ. Further let =T _ul, where I'.=U T = Ur,,
(] P D™ 'N D jew J N jeN J

DnN = ¢ be the Dirichlet and Neumann part of T respectively and

rp,D = rD’\Qp' rp,N = rNerp.

We will be interested in the (weak) solution of the boundary value

problem

(2.1a) -Au = g in Q

(2.1b) u=0 on FD
3u

(2.1¢c) 3n = 8 on FN.

Denote by HI(Q) the usual Sobolev space, and let

(2.2a) H,l)(m {ueH (@Iu=0 on ) if rp=e

(2.2b) H})(m

(ueHl(ﬂ)IIudx=0} if l"D=¢.
Q
Further let

(2.3) Bg(u,v) = J Vu * Vv dx
Q




be the bilinear form defined on Hé(n) xHilj(Q) and

172

(2.4) "u"E(Q) = (Bglu,u)) "%,
Obviously || | is equivalent with the standard Sobolev norm | - ||

E(Q) HI(Q)
(if I‘Daegb).

Later we will also use the notation

1 _ 1 _
HD(Qp) = {ueH (Qp)lu =0 on I‘p,D} if rp,D¢¢
}%(n ) = {ueH ()] f udx =0} if T _=¢.
[ p p,D
Q
P
The meaning of BQ {u,v) and "u"E(Q ) is obvious.
P [2]

Now the weak formulation of the problem (2.1)-(2.3) is: Find ueHé(Q)

such that

r

- 1
(2.5) Bn(u,v) = [qv dx+ § =% ds for all ueHD(Q).
Q N

If T, =¢ we assume Igdx+ § g, ds = 0.
D r N
Q

(By ds we denoted the surface element).

We assume that g and g, are such that the weak solution exists (and

is unique) e.g. geLn(Q), gNeLQ(I‘N). Further we will assume that

a) g=0 in Q

2R
(2.86)
b) gy = 0 on r2R,N'
Remark 2.1. We assumed that u = 0 on I'D for simplicity only. The
assumption (2.6) (together with u =0 on r2R D) is more essential. We
will briefly comment on it in Section 7. o




Together with the usual cartesian coordinates x = (xl,x x3). we also

2l
will use in the neighborhood of V0 (specifically in Qp) the spherical
(polar) coordinate system, (r,8,¢) centered in the vertex VO'
Let ¥ = {S} be the set of all functions SlEHé(QR) having the form

2.7) s = rMice, ¢), A>-%

and satisfying (in the weak form) the equations

(2.8a) -AS =0 in QR

(2.8b) S=0 on rR.D

(2.8¢c) gg =0 on rR,N'

In the case when all the faces f.,j = 1,+++,n which contain V_ belong to

0
the Neumann part of the boundary (i.e. FR D= ¢), the constant function also

satisfies (2.8) but we do not include it in ¥.

Below we will see that the set ¥ 1is not empty and is denumerable, i.e.

¥ ={s,,S,,* "'} with S, = rAJw (6,9), A,€eR. We will assume that the S
1’72 J i J J
are ordered such that AJSAJH' The functions Se€¥ will be called
singularity functions.
Since
as _ -1
Er Ar 'S

the function S satisfies the equation

1
(2.9) BQR(S,V) = A bR(S.v) VveHD(QR)
where
(2.10) bR(u,v) = R-1 J uv ds
0
rR




It is well known (see e.g. [D] [G1],[G2],[KO],[P]) that the solution u
of (2.1) (or equivalently (2.5)) admits (under assumption (2.6) for any s>0

the following decomposition on QR:

2.11a) u=u,+ Z CS, S.e€

( 0 3oy Cyc8
A +1/25<s

where

(2.11b) J |Vu0|2r'25dv<m,

%R

Here (2.11b) relates to the seminorm of the weighed Sobolev space His(QR)'
. ; 1
(2.11b) implies that wu, is in H_S(QR) modulo constants. If FR’D:=¢,
1
then ujeH__(Qp).
We will obtain (2.11) as a consequence of the results in Section 3 and 4.
Equation (2.11) shows that the behavior of the solution near the vertex is

determined by the singularity functions S

3
Let
w = :E: c.s.,
s J J
AJ+%SS

then the relative error in the energy norm between u and W, goes to zero
for r—0, because of (2.11b). Therefore W is a good approximation of u
in HI(QR) if r 1is sufficiently small.

The numbers C 1in (2.11) are called the vertex intensity factors.

With each singularity function Sj of -the form (2.7) we will associate

the adjoint singularity function

~1-A
2.12 = J ,
( ) S J r w.(0 Q))

It is easy to check that S-j satisfies (2.8 abc), but S_jdﬂé(ﬂR).




3. The Steklov problcm

Coming back to (2.9) we introduce the Steklov eigenvalue problem: Find
all pairs (S,A), SeHé(QR) such that (2.9) holds.

In the case that T the trivial function S =1, (A =0) will not

R,D = ¢’
be considered here.

We can cast the Steklov problem in a different form. To this end

define the operator T: Hllj(QR) ——)Hé(ﬂR) such that (with (2.10))
_ 1
(3.1) BQR(Tu,v) = bR(u,v) Vu,veHD(QR)

The operator T 1is obviously selfadjoint and is well defined by the

coercivity of BQ . Since the trace mapping u +—— u| HI(QR) —>L2(I'g),

o
R I'R

is compact and the bilinear form bR(u,v) is continuous on LZ(Fg) xLZ(l"O),
the operator T: H]IJ(QR) %HIIJ(QR) is compact.
Now the Steklov problem (2.9) can be cast in the following form:

Find (é,l\), éeHé(ﬂR) such that

(3.2) ATS = S
1

or denoting A = A

(3.2a) TS = AS.

It is known from the theory of compact selfadjoint linear operators that
there are countably many eigenpairs (SJ,AJ.). AjeR, with no accumulation
points except at A = 0. Furthermore the eigenfunctions Sj yield an

orthonormal basis of the closure of the range of T. If A, is a simple

J
eigenvalue, then SJ is uniquely defined up to a multiplicative factor. For
multiple eigenvalues AJ =.. 'Aj+m we will assume that S,j' “"S\j+m are
orthonormal with respect to BQ . In this case only the span (SJ’ . ”’Sj+m} is
R




. unique but the orthogonal basis {S.,,---,S,, } 1s not unique.

J J+m

From (3.1) we readily see that for u = Tv we have

(3.3a) Au = 0 in ﬂR
(3.3b) u=0 on rR,D
(3.3c) g—:—; = 0 on rR,N
(3.3d) M=v on rp

Hence the eigenfunctions S, form a Hilbert space basis of the space

J

(defined in the variational sense):

_ 1 - - du _
Z(QR) —{uEHD(QR), Au = 0 in QR, u=0 on FR,D,%-Oon rR,N}'

We also see that functions Sj'l‘° form an orthogonal basis of the space
R

2,0
L (I"R).

As usually we will assume that

- A 0 for k=]
(3.4a) B, (S,,S,) =
B )7k 1 for k=
and
-~ A {0 for k=
(3.4b) b (S.,S ) = .
R'7j 7k 1
< = A, for k=
AJ J 'j

In the case that T we will understand L(QR) and LZ(I'g) as spaces

R,D - #
modulo constants.
So far we assumed that HIIJ(QR) is a real space. We will extend it to

the complex space C by defining, as usual,




BQR(u,v) = J (Vu) « (Wv)dx,
Qp
with br(u,v) being analogously defined.

Denote by p(T) the resolvent set of T, i.e. p(T) = (zlze(:,(zI—'I‘)-1
exists as a bounded operator on Hé(QR)} (by I we denoted the identity
operator). Further let o¢(T) be the spectrum of T 1i.e. o(T) = C-p(T).
For any ze€p(T) denote RZ(T) = (zI-T)-l, the resolvent operator.

Let p be a nonzero eigenvalue of T with multiplicity m+1 and 7%
be a circle in € centered at u which lies in p(T) and which encloses no

other point of o(T) than u. Then the spectral projection associated with

T at u is defined

_ _ 1
(3.5) E = E(u) = T J RZ(T)dz
¥

see e.g. [BO1]. Now we prove

Theorem 3.1 Let (Sk,Ak) be a Steklov eigenpair. Then Sk has the form

- M
(3.86) Sk(r',e,q)) =r wk(e,w)

Proof Let Sk(r,e,w) be the Steklov eigenfunction. Then we can, for any

O<r <R, define

(k) _ o -
(r) = J Sk(r,e.ip)Sj(R,e,w)ds

(3.7) a
J
l..0
r
For 0<r1<R apply now Green’s formula for Sk(r,e,w) and S‘j(s—r,e,qp)
1

in an' Then it can be readily seen that

10




(3.8) (ék(r,e.«a), S

BQR1 |

rR
(=

,0,9))
Jry

ar J

0
ry

a:::.k X
= J -— (r,0,¢), S.(R,0,¢)ds.

On the other hand we have by scaling (2.9)

(3.9) B. (S (r.08.9), S.(F},0,0))
%, K Jry
1
I - ;
= Aj ry J Sk (rl,e,w), SJ(R,B,w)ds
r‘O
r
_ (k) -1
aJ (rl)l\jr1 .
Further we see that
aék .
(3.10) I aT (Pl,e,q)), SJ(R,9,¢)dS.
]
r
(k)
da
= 323
ar (rl)

where the derivative on the right hand side of (3.10) is understood in the

weak (distributional) sense. Combining now (3.7)-(3.10) we get

dagk) -1
ar = AJr
and hence
(3.11) al® ) = cl®M ocrsr .
J J
(k) _ X
From (3.4b) we get CJ =0 for k=j.
Since S,|., 1is a basis of L‘(FO) we obtain
J Ty R

11




"

: : A
sk(r,9.¢) = ;K; o Sk(R,e,w) = r wk(e,w)

which was to be proven. (u]

We get immediately

Corollary 3.2. The singularity function S, are exactly the Steklov eigen-

J

function S, (up to a factor or linear combinations for multiple eigenvalues).

J
o

12




4. The vertex intensity factors

Let u be the solution of the boundary value problem (2.1) (or
equivalently (2.5)) and assume that (2.6) holds. Then we have ulnRe'f(ﬂR)
and hence by corollary 3.2 u can be written in the terms of the basis

functions {Sl,Sz,...)

[ ]
(4.1) u = :E:E S..
JJ
J=1
Let us show that (4.1) implles the decomposition (2.11) with c = EJ.
Let
(4.2) u, = u - Z CS, = Z C.s,
0 JJ JJ
A +153 A.+i>s
J 2 J 2
and for 0<ps<sR
_ 2
Flp):= quOJ dx,
Q
p
then by the orthonormality of SJ we get
F(R) = :E: 52 =C < o
J
AJ+%>S
Further let
- e = )M
uo(x) = uO[Rx] = Z CJ[R] SJ,
A.+1>s
J 2
then for sufficiently small €>0
=8 a..u
(4.3) Flp) R BQR(uo,uo)
2A 1+2(s-1/2) +¢
=@ :E: &2 (e 55 e 2 < C p25+e.
R J IR R J
13




Let

J P-ZSIVuOIZrzdr dw
0
R

R
c=[
0

where dw denotes the surface element on Tg. Hence integrating by parts

wel

we get
R

G = R2 J r 25k (r)dr = R 2725F(R) + 2sR™2 | r 25" 1p(ryar
0 0

and using (4.3) yields

J r'ZSIVuolzdx =R2%6 = R%25rR) + 2sR2 | r 25 e (r)ar

QR 0

<€ +2s | r ) < c.

0
Therefore (2.11b) holds with C, = C,. Hence we can use (4.1) and (3.4) to

express the intensity factors C

J

A
- = - —l .
(4.4) Cj BQR(U’SJ) AjbR(u’Sj) R | ou des

R
Replacing u,SJ,AJ by their finite element approximations, we will use (4.4)

in section 7 to compute C, numerically.

J

Remark 4.1 Note that in the case when Aj is a multiple eigenvalue the

functions S, are not unique and hence C, depends on the choice of the

J J

singularity function SJ. For a simple eigenvalue Aj the eigenfunction Sj

is unique up to a factor of -1.

14




S. Finite Element method

Let ?q(ﬂ),q = 1,2, -+ be the partition of €1 into the set of open
elements 73,1 =1,2,:-+ M(q), Wq(Q) CHIIJ(Q) be the associated finite element
Co-spaces and let N(q) be the dimension of Hq(Q). Further let Mq =
(7 (Q),W (Q)) and M = {AM }.

q q q}
Denoting by uq the finite element solution of the problem (2.1)

satisfying
(5.1) Bn(uq,v) = Bg(u,v) Vvewq(n)

we obviously have

(5.2) lu=u_| = inf [Ju-¢| '
q E(Q) CeW (Q) E(Q)
q

where B(u,v) and | - "E(Q) were defined in Section 2 (see (2.3), (2.4)). 1If
the data g 8y in (2.1) are sufficiently smooth say geH—hs(Q). gy = CZ—n-Ger
for some GeHhS(Q), s>0 then the weak solution HEH.[l)(Q) of (2.1)
{(resp. (2.5)) exists and is unique. It belongs to H1+S(Q) where Q =

n -
Q- U Eﬁ, Eg being the A neighborhood of Ej‘ In the neighborhood of

J=1
!_EIJ.J =1,--,n and Vi,i =0,1,:---,m, the behavior of u 1is determined by

the edge and the vertex singularity functions. The approximability of these
functions determines the convergence rate of "u‘uq"E(Q) of the finite element
solution. We assume that the convergence of the finite element solution is
characterized by a nonincreasing function F:N-—R_, with F(g) —0 as
q—». More precisely, we will say that uq is F-convergent if there exists

a constant C 1independent of q but depending on u such that

(5.3) inf

Ceﬂq(ﬂ)

< CF(N(q))

lu-u lipq) = 1Sl g

15




Remark S.1: Later we will assume that an estimate of the form (5.3) with the
same function F also holds for a class of solutions which will be specified

in Assumptions Al’ A2. A3 below. It may be that the function F which

Az. A3 glves a less than optimal error estimate in

(5.3), e.g., in the exceptional case when the solution u 1is smooth.

satisfies Assumptions Al’
An interesting question is the characterization of all functions u

satisfying (5.3) for a given function F(N(q)) and a given sequence of meshes.

For the description of such class of functions in a particular case we refer

to {BKP]. In practice we can assume that Hu—uqu =~ CF(N(q)) which is a

E(Q)
typical case, but in the sequel we will only assume that (5.3) holds.

Let us describe the convergence function F for some typical examples.

Example 5.1. The h-version method on a quasiuniform mesh. Let Pq(Q) be the
standard family of quasiuniform simplical (in general, curved) meshes of the
size é (see e.g. [C1],[C2]). Let Hq(QR) be the set of functions Hé(Q)

which are polynomials, of total degree < d on each simplex. Then we have

(5.4) F(N(q)) = N(q) B3

where

(5.5) B = min(d,s,o-¢}, €>0 arbitrary

(5.6) o= min{Aik),+ %,vie)lk =0, +-,m, &= 1.2,---.n}

where Aik) is the smallest vertex singularly exponent for the vertex
singularity function (see (2.11)) and viZ) = 5?77 where w(t) is the
internal angle of Q at the edge f‘t. If Et= FinFJ and ie€eD, jeN

or 1eN, JeD (i.e. the Dirichlet condition is prescribed on one side and
Neumann condition on the other side of EC) then uil) = _ETTT' instead. By

2w

16




l+o0-¢

the regularity theory, we have then ue€H (Q), € <0 arbitrary where we

denoted by Hl+c‘e(ﬂ) the standard Sobolev space with fractional derivatives
(for definition see e.g [BL]). (5.4) then follows from the standard theory of

the finite element method.

Example 5.2. The p-version of the finite element method. Here Pq(Q) is
fixed mesh of simplices (generally curved) and Wq(ﬂ) is the space of all
functions in Hé(n) which are polyncomials of degree q on each simplex.

Then we have

(5.7) FIN(Q)) = N B€)73 ¢35 0 arbitrary
where
(5.8) B = min(s,2¢),

where o 1is given in (5.6) (see [D1], [D2]).

Example 5.3. The h-p version of the finite element method. Here Pq(n) is
sequence of properly selected meshes and Wq(ﬂ) is the space of functions in
Hé(n) which are polynomials of degree R(q) with R(g) —w as gq—w

properly selected. We assume that g 1is an analytic function on Q and 8y

is an analytic function on every face FO. We can then expect that

_n174
(5.9) F(N(q)) = e 7

(5.9) was proven in the case that QcR®, n=1,2 when

FONGG)) = e_le/(n#l)

see [BG], [GP].

We need now to make additional assumptions about the family M.

Ay: Fg coincides with the boundaries of the elements 9? of the partition

P_(Q).
q

17




Ax:  Let ueHllj(Q), Bu=0 on Q and du=0 on n-ﬁR. Denoting

u, = uj and u. = ul assume that u, resp. u
- p

1 Qr 2 a-i, 1
extended to a harmonic function on QZR resp. Q-QR/Z and ug = 0, ¢=1,2

, can be (analytically)

on FDIN(Qza'QR/z). Then

(5.10) inf |lu-q| < CF(N(q))
cewq(n) E(5)

Az: Let ue.‘f(QZR) (as defined in Section 3). Then

(5.11) inf  [lu-gl

E(Q.)
CeW_(9p) 2

< CF(N(q)).

In (5.10) and (5.11) the function F(N(q)) is assumed to be the same as in
(5.3).

Let us now discuss the validity of the assumptions AI’ A2, A3.
1) Assumption A;: It can be satisfied by the standard finite element

technique using the binding mapping of the master element (for the h~p version
see [BG] for details).

i11) Assumption Aj: Here tJeZ(QZR) implies that the function u has only a
vertex singularity at V0 = 0 and the edge singularities at the edges
0
i’ R’ Therefore, the
assumption A3 is satisfied in the examples 5.1, 5.2 and 5.3 by the direct

E 1=1,---.n0, but it has no additional singularities at &I

application of the corresponding approximation results.

i11) Assumption A,: We will briefly sketch its validity for the examples

ment ioned above.

Example §5.1. The h-version on the uniform mesh. For simplicity we will

restrict ourself to the case d = 1. Consider the space

18



- 1 -
®, = {ueHD(Q)IuIQREHZ(QR), ulQ_QReHZ(Q QR)}.

2 2

2
flull™ = Jluil + il
H (Q-Qg)

#y H2 (Qg)

Further let Hh be the energy projection operator of Hé on Wq(Q). Then by

the standard approach, see e.g [C1], [C2], we have for vesz.

Applying the interpolation theory (see e.g. [BL]) we see that for 1<s<2,

0 = s-1

= Jul _ 1 s S
}(S = {HD,}(Z}Z . = {ueHD(Q) | ulQReH (QR),UIQ_QREH (Q QR)}
and hence for any ueRS,

lu=Tiull o) < Ch%Jul

E(Q) Hs

Assume now that u satisfies assumption A;. Then u has the same type of

singularities in QR and Q-QR as solutions of (2.1) with smooth g and CAE
l+o-¢ 1+0—~¢ : .

Hence uIQReli (QR). ulQ_QReI{ (Q Qk) with ¢ as in (5.6) and

(5.10) follows.

Example 5.2. The p-version. Here the validity of A, follows by applying

2
Dorr’s results. (see [D1], [D2]). He approximates first the solution u
having singularity of the vertex and edge type element by element using
weighted (Legendre type) spaces, imposing continuity at the vertices of
elements. Then the difference of the approximation on the edges and faces of
the neighboring elements (the discrepancy) in the (Legendre) weighted spaces

norm is estimated. Then it is shown that it is possible to extend this

discrepancy into the elements where the extension mapping is continuous from

19




the weighted spaces on the boundary to Hl in the element. Hence only the

smoothness of the solution in each element is employed. Realizing that in
every element, the function u can be decomposed into a smooth function and

the singular functions the arguments of [D1] and [D2] apply.

Example 5.3 The h-p version in Rz. Here the singularity is only in the
vertices of the domain and there are only finite number of elements which have
boundary on Fg. As in [BG] we approximate u separately on every element
and then remove the discrepancy (discontinuity) of the approximation on the
boundary of elements. Because the solution in every (closed) element which
nonempty intersection with Fg is analytic, the arguments used in [BG] are

immediately applicable.
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6. Computation of the Singularity Functions

The singularity functions S, (see Corollary 3.2) will be computed by the

J

finite element method as the approximate eigenfunctions of the Steklov
eigenvalue problem. We will assume that the assumptions AI—A3 introduced in
the section 5 hold.

The finite element solution of the Steklov problem is based on the

variational formulation (2.9) (2.10): Find s“q]ewa(nR) and Al9) ¢
such that
(6.1) B (sl vy = A9y (sl o) v vew (a)

. QR 1] \j R » » qQR-

By normalizing the eigenfunctions and orthogonalizing the eigenfunctions for

multiple eigenvalues, we have, analogous to (3.4 ab),

0 for k=
(6.2a) B, (5.4 sl) -
R J 1 for k=
0 for k=
(6.2b) (s[ ql siq] =1, .
— for k=
q
J
Let further (Sj 3 ) J= *++ be the exact eigenpairs. Then we have
(sec [BO1]).
Theorem 6.1. Let S.,S., ., ---,S,. be the eigenfunctions associated to the
J J* Jm
eigenvalue AJ with multiplicity m+1 (i.e. AJ = Aj+1 = ... Aj+m)' Then for

q sufficiently large there exist exact eigenfunction S ,8=0,---m

J*¢.q’
(depending on q) and satisfying (3.4) such that

lql
(6.3) "Sj+€.q J+£ E(ﬂ ) < Ce
_Alql 2
(6.4) lAj+l AJ+£I < Cej

21




where

(6.5) €, = sup inf s~ <l
J _ E(QR)
SEM(AJ) "S"E(QR)—l
CEWq(QR)

J

m+ 1. n]

and M(A,) is the eigenspace associated to the eigenvalue Aj of multiplicity

We will show later that we can impose additional conditions on Sj+£ q

The constant C in (6.3) (6.4) is independent of q but depends on various

other factors (see [BO2] for the discussion). In the sequel we will also

write Sj instead of S, if no misunderstanding occurs.
With the assumption A3 we get
(6.8) e, £ C.F(N(q))
AR B

and hence from the theorem 6.1 we get

(6.7) Is. - std]

3755 Teeay)

< CF(N(q))

(6.8) |%-%“|summwn2

Remark 6.1 Note that the bilinear form bk(u,v) in (2.10) depends only on u

and v on Fg. This allows us in practice to eliminate first all unknowns

inside QR and obtain an eigenvalue problem on Fg

of unknowns the LU decomposition of the stiffness matrix on QR can be used

only. By proper orderings

in the computation of uq i.e. for the computations of the finite element
solution of (2.1).

Let us now write the finite element solution of the Steklov eigenvalue
problem in a different way, which is the basis of the estimates (6.3) (6.4).
This will be used in the next section too.

Let nﬁ be the elliptic projection of HD(QR) into Hq(QR) defined
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by

- 1
(6.9) BQR(ng,v) = By (u,v), Vue Hy(ap), v e W ().

Define now Tq = H§T where T 1is given in (3.1). Then 'I‘q converges to T

in the norm of linear mappings HI(QR)-——aHl(QR) as q—o.

Further consider the spectral projection E(A 1) onto the eigenspace of

J
A31 of T given by (3.5) where 7 1is a circle which encloses A31 but no
-1
Ak which AkatAJ.
-1, _ 1 _ -1
(6.10) E(I\‘j ) = 5x J (T-2zl') “dz

7

[q]

Let Sj be an eigenfunction of (6.1). This implies by definition of Tq

that qu] is an eigenfunction of Tq:

1 stal = (plaly-1glal
q J J

We have then the following relation for the projection of an eigenfunction

S[q] of Tq onto the eigenspace of T

n

[al _coatvalal 1 [ =1 -1l
(6.11) SJ EI(I\J)S‘j i [ (T-z1) (Tq T)(Tq z1) SJ dz

¥
In (6.8) the roles of T and Tq are reversed in comparison with [BO1],
section 7.

Let us impose additional conditions on Sj q:

Theorem 6.2. Let Sggl £=0,...m(j) be the approximate (finite element)

eigenfunctions associated with the eigenvalue A  of multiplicity m(j) + 1.

J

Then there exists §J+e(qebﬂAJ) satisfying (3.4) such that

glal

(6.12) "Sj+8,q- J+l"E(QR

) SCeJ

23




(6.13) : IS . - hHstal

2
get.q " By S5l g SC8;

where CJ is defined by (6.5).

lyglal

Proof. As mentioned previously, EI(I\‘j el

[q]
J by’ into M(AJ). Let

is the orthogonal projection of

= - {q]
(6.14) S‘j”’q E(A\j )SJ+£ .

We have by orthogonality

[q],2 [q]

~ 2 _ ~
(6.15) 1S elecqn) = 1S540, qlEcam) = "1Sj4e,q = Sj+elE(aqp)
and hence
~ 2 2
< _
(6.16) 051 -18,,, Jgq, S Ce5

Now we will construct by induction the orthonormal system of functions

§J+t q ,=0,---,k, satisfying (6.12) (6.13) by the Gram-Schmidt

orthogonalization process. Assume now that (6.12) and (6.13) hold for

¢=0,--+, k-1 (for k =0 no assumption is necessary since Sj+k q =
§J+k q and only eq. (6.18), (6.21) below are used). Then we define
k-1
(6.17) Sivkq " Sj+k,q-':E:BQRESJ+k,q'Sj+£,q]sj+£,q
=0
and
S
- k’q
(6.18) 5., =
Jhea s )
J*k,q"E(QR)

Consider first
k-1
(6.19)

A
Syekoq = Sgek,q T Z Bna[sj+k.q'sj+e, q]sm.q
£=0

Noting that by (6.14), (6.2a) we have
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= fq} _ = - =0 ...
BQR[Sj+k,q’SJ+£ S =0, k,2=0 ---,m(J)

J+¢, q]

[q] [ql) _ =0 -
BQR[SJ+k'SJ+£ =0, k,2=0,---,m(J), k=2
B s[q]—é S =0, k,£=0,--+,m(J)
QR ‘j+k J"’k.q, ‘j+e’q 3 ? 1' »
and hence
[~ = _ (= [q]
Bﬂa ‘SJ+k.q’SJ+£.q] - [SJ+k,q’sl ]
o n [z _<la 1 Jlql
= B [Sov, a7 Sk Syee
= [ _elal lal _ =
= Boa [Ptk a7 Syek tSiee TSyt q
Therefore

~ ~ 2
B S , S, < Ce',.
' na[ J+k.q J+e.q]' J

This yields

-~

A ~ 2
- <
1S54k, q 7 Sjek, gV ECaR) < €
and by induction hypotheses we get also

A = 2
- <
(8.20) "Sj+k,q Sj+k,q"E(QR)"C€J'

Using (6.16), we get

P 2
b >1 -
(6.21) 1""Sj+k,q"E(QR)_l Cej,
and from (6.20) we get
2 2
(6.22) 18 ju. qME oy = 1 SC5

Hence from (6.18) and (6.20) we get

, ~ 2
- <
IS 54k, q ™ Syek, g"ECaR) = ©F

which was to be proved.
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7. Computation of the Vertex Intensity Factors

The exact value of the vertex intensity factor is given by (4.4). Hence

we will numerically compute qu] as follows:
any A"
(] _ ql] _ 7J [ql]
(7.1 CJ BQR[uq’SJ ] R »J quSJ ds.
l-R

We then want to estimate the error C[q]-C

J J’

As we sald in the remark 4.1, the stress intensity factors C, depend on

J

the choice of exact eigenfunctions S The eigenfunctions are not uniquely

3
defined if the associated eigenvalue Aj is not simple. In this case we will

consider the stress intensity factor C, which are associated with the

J+i. q

eigenfunctions S £=0,--m, which were introduced in theorem 6.2. The

J+t.q’
decomposition (2.11a) of the exact solution can be expressed in this basis

with vertex intensity factors C depending on q:

J.q
u = + C S .
‘o Z Jiad.q
A . +-Ss
Jj 2

For simplicity we will write in what follows §S. instead §j

J q’

We have now

Theorem 7.1 Assume that the assumptions A, - A, are satisfied. Then for

1 3

sufficiently large q we have

(q] 2
7. - <
(7.2) IC‘j CJ,q' < C(F(N(g)))
Proof. Using (7.1) we have to show
(7.3) B [u ,s[q]]-B (u.S,)] s CFIN(@)))Z

BR{q”J Qr J

we h\"
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(q]] _ - _clql _
(7.4) Bn“[\.lq.sJ ] Bﬂg(u'SJ) BQR(SJ S\j .u)+BQR(SJ.u uq)

- _elal _ _
BQR[SJ sJ ,u uq] = D, +D,-D,.

We will estimate Dl'l = 1,2,3 separately.

1) Estimate of D,. Using assumption A

3 we get

3’

[q]

2
3 "E(QR)"U"uq"E(QR) s CF(N(q))

(7.5) |03|5||5J‘S

which follows immediately from (6.12).

2) Estimate of D2. Let weHllj(Q) satisfy

_ 1
(7.86) Bn(w,v) = BQR(SJ'V) ‘v’veHD(Q)

The function w exists and is unique. It can be readily seen that (7.6)

is the variational formulation of the problem

R

[ Aw =0 in QR .
Aw = 0 in Q - ﬁR
(7.7) lwl. =0 Ou | =o
FD an r
N
_ aw _ 48
. R R
X 0 = = -
By [ ]I..oR we denoted the jump across FR. Let Wy, = wIQR, W, = wIQ__QR and
define ¥y in QZR by
wl in QR
(7.8) w, = A .
1 _ __i__ _ 1*2Aj -8
Y2 T TR, [SJ R S-J] In Qp- 9%
Because we have S, = R“ZAJS_J on FO, we have lallro = 0 and since

J R
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3 (o _pl+2A,
[s\j R s_J]

dn

2A+1 3S a =~
eA)y" - 99 g =
A, an we get [an wi]ro 0.

R
Further, Awl 0 on QR and sz =0 on an - QR Hence

~ ~ 1 . X
Aw1 =0 on QZR and wleHD(QzR). This shows that w can be analytically

extended from ﬂ.R into Q as a harmonic function.

2R
Analogoﬁsl,, we can extend the function w, on Q-QR/Z by defining
v, in Q - QR
(7.9) w, = A .
2 j - 1+2AJ - =4
“1 " ToaA, [Sj R S-J] RS T

Because of (5.1) we have for any wqewq(ﬂ)

D, = BQR(S

,u-u_ ) = B(w,u-u_ ) = B{w-w _,u-u ).
2 q ¢ q q q

J

Using assumption A2 we get

(7.10) ID,| £ inf SCF(N(q))2

2" u (m"""c"s(sz)"“'“q"Em)
1

3) Estimate of Dl'

Define as in (6.14)

=lql -1,.[ql
7. = .
(7.11) SJ E(I\‘j )SJ

Then

_elal _ o _alal | zlql _lql
SJ SJ SJ Sj + Sj Sj

For sufficiently large q we have using (6.11)

lal _zlal _ qla) _ o1 elal) _
SJ SJ SJ E(AJ )Sj

- —I—I (T-z1) " N1 -T)(T _-z1) "1ty
q q

[\

ni J
7

(q] _ 1 [q]
Since TqSJ ;TET SJ we have
J
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-1 -1 [q]
B - T - - .
QR((I‘ z1) “( T)(T -zI) SJ ,u)dz

TN P 1 (ql

BQR[(T zl) (Tq T) —m—_—l-:— SJ .u]dz.
(AJ ) z

By (3.1) we have

_ 1
BQR(Tw,v) = BQR(w,Tv), Vw,veHD(QR)

and hence

1

-1 -
BQR((T-ZI) w,v) = BQR(w.(T-zI) v)

which yields

lql _zlql -1 _ (ql,~1__,-1.[q] -1
BQR[SJ S‘j '“]‘mJBnR“Tq T)((A‘j ) "-z) SJ. , (T-2zI) “u)dz.

4

Because ul_. € £(Qg) we can write

Qr

(7.12) u

[+ ]
chsk
k=1

o0

(7.13) Z|Ck|2<m.
k=1

Hence
[+

(T-zI)-lu :E:(Ail-z)-lcksk.

Let us define

(7.14)

(=R
1l
3
oA
e
A
~—
o)
>
Ce ™
el
—
|
)
L
N
—
|
b
]
|
N
1
c
Q.
N

\
g
=
wn
=
e
e
o
>
Ce ™
Q
———/
A
¢
N
e
1
—
i
—
[}
N
1
[
Q.
N

298




Since ASit = Asl,t =1,---,m(j) 1is inside of the circle y and all other

Ail are outside we have from the residual theorem using the poles at

z = Akl and z = (l\[q])-1

J
-1 -1
1 (q] -1 -1
ZTiJ [[AJ ] -Z] (Ak ’Z) dz

7
0] for k = j+¢, &=0,:---,m(J)
-1
= -1 -1 .
A[q] -Iat for k = j+¢, L =0,---,m(Jj)
‘j A'k ’ i ’
Therefore
od -1
~ (ql-1_ -1
(7.15) u = :E: [(AJ ) Ak } Cksk
k=1
k= j+&
and hence for any CEHII)(QR)
[q] _zlql _ [q]
(7.186) |2, [ 5 J+£,u]l = |5, {(r -Ds 3, ]l
- _meldal _melql
- IBQR[(Tq UESAE <]| s NT DS

seelE(ay T MW Clgq)
\
|
|

Let us estimate both terms. To this end we write

{q] _ _ _ (q] _
(T q T)SJ+£ (Tq T)Sj+t + (Tq T)(S\j+£ SJ+£)

and

T - S = HR—I -

(T~ (m-DTS (nR I)AJ Sj.p
Then using assumption A3 we get

-1
(T -T)S, LI S CA max Is,. ,~<l < CF(N(q)).
q JHUE(QR) J =0, - - -, m(§) J+2 TE(QR)

- <
Further because "Tq T"E(QR)eE(QR)' 1 (for q sufficiently large) we get
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- [q] [q]
(1w r)[ - J+e]"E(nR) < 15095 g gy € CCFONG@)).
and hence
(7.18) ner -mystady < CF(N(q))
: q Py elE(Rg) S :

Let us now estimate the second term in (7.16).

 J
We know that uef(QZR). Hence u (x) = u(2x) € £(Qg). Therefore we

can write
> ]
] »
(7.19) u = chsk
k=1
with
> ]
* 2
(7.20) Zlckl
k=1

On the other hand we have on Qg/5.
[+
(7.21) u (x) = u(2x) = Zc s (2x) = ) c.2Ms (x)
' K-k k° k%
k=1
and (7.19) yields

»
= Ax
(7.22) Ck Ck2
o0
(7.23) ZciZZAk < o

~" ~
Now we consider u (x) = u(2x). We get from (7.15) for xe€Qy

~ B
(7.24) u (x) = desk(x)
k=1
where
I(A[ql Ak 17l 2™, ko= et
(7.25) dk =
0 k = j+t .
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Since for k= j+¢ the numbers A;l are outside of 7 and (Agfl)-l is

inside of ¥ (for q sufficliently large) we have

(7.26) IAk [ [q]] | 2 ¢, > 0.

(7.25), (7.28), (7.22), (7.23) yield
-] [}
2
:E:(dk) -75 }:
k=1 0 k=1

~ ~
Therefore u ef(ﬂR) and hence ter(QZR). Using assumption A, we

3

have

(7.27) inf  Ju-Cl
cewq(ﬂg)

E(Qg) < CF(N(q)).

Hence from (7.16) us.irg (7.18) and (7.27)

(7.28) ,B [ 331 §§Sl,u], < CF(N(q))?

Using now (6.13) we get

[q] 2
g, [s39} - S o] < CFONCaD)

i.e. IDI' < CF(N(q))2 what was to be proven. n}

Remark 7.1 We have assumed that (2.6) holds. This allows us to use the
decomposition (2.11). In the general case the decomposition is more complex.
The present theory can be generalized to this case but we will not address the

problem here.
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8. Numerical Results

Let us consider the following mixed boundary value problem. Let € be a

cube with a crack,

Q= {Ix.l<1, j=1,2,3} - {(xl,xz,O)IOSx <1, 0<x, <1}

J 2

1

as shown in Fig.8.1.

Figure 8.1. The cracked cube

On both sides of the crack and the two faces x1 = 1 and x2 =1

Dirichlet conditions u = 0 are prescribed. On the remaining 4 faces of the

cube the following Neumann conditions are prescribed

1) u

0 on the faces x1 = -1, x2 = -1

n
u n n _
ii) 35 = cos a(x1+l) cos Z(x2+1) for Xy = + 1

The boundary conditions imply that the solution will not have singulari-
ties at the edges and vertices of the cube (since one can use even and odd
extensions). The solution has a singularity at the two edges of the cracks,
(0,1) x {0} x {0} and {0} x(0,1) x {0} and at the vertex at (0,0,0). For

a more detailed description of the edge and vertex singularities in this
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example see [PS1]. The (smallest) leading euge singularity exponent is a = 5
The leading vertex singularity exponent A1 is not analytically known, our

computational results below show Al % 0.2966. We use symmetry and analyze
only the half cube (-1 <x3'<0) computationally. The p-version of the

finite element method implemented in the program STRIPE (S] is used. We used
two different meshes, the "unrefined mesh" and the "refined mesh." Both
meshes contain a ball around the vertex at O.

Figure 8.2 shows the unrefined mesh. For clarity, the mesh inside QR is

shown separately.

Figure 8.2. The basic unrefined mesh around the vertex at O.

In Figure 8.3 we show the refined (geometrical) mesh with 6 layers.
The sizes of adjoining layers have a ratio of o = 0.15 for the mesh used in

the computation (in Fig.8.3 ¢ = 0.5 is used for clarity).

Figure 8.3. Detail of the geometrically refined mesh in the neighborhood
of the vertex at O.
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[q]

In table 8.1 we report N(q) and the computed values of A[q], C and

1

uuqué(n) for the mesh shown in Figure 8.2 as function of the degree p of the
elements. Table 8.2 gives analogous results for the refined mesh (with 6
layers) shown in Figure 8.2. From tables 8.1 and 8.2 we clearly see the effect

of the refinement of the mesh. By using a more refined mesh, a higher value

of p and extrapolation, we estimate the exact values for Hung(m,l\l,c1 as
2
(8.1) A1 = 0.23658 C1 = 10.123, ”u“E(Q) = 8.66308
Table 8.1. The values of Al,C1 and Hung(n) for the mesh shown in Fig.8.2
[q] [ql 2

P N A ¢ Il q)

2 133 0.315743 g9,50571 8.5697572

3 231 0.313768 9.55731 8.5867675

!\ 420 0.307749 9.75874 8.6263436

5 700 0. 304403 9.86982 8.6403593

6 1099 0.302277 9.933970 8.6485159

7 1645 0. 300888 9.98514 8.6536345

8 2366 0.299943 10.0161 8.6570836

9 3290 0.299274 10. 0380 8.6595274

10 4445 0.298785 10. 0540 8.6613051

11 5859 0.298418 10. 0660 8.66263398

Table 8.2. The values of Al,C1 and Mu"é(n) for the refined mesh shown in
Fig.8.2

(ql [q] 2

P N A1 Cl : uu"E(Q)

2 1438 0.2976869 10.5183 8.6049893

3 2582 0.296866 10. 1308 8.6320936

4 4852 0.296603 10. 1317 8.6671875

5 8304 0.296589 10.1210 8.6686351

6 13326 0.296584 10. 1214 8.6690024
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We use the values on (8.1) to compute the relative errors

2 (q] _
b1G c

E
2 ’ [A, ] ’ IC, |
IlullE 1 1

lqu] -A I

Iluq = ul 1

In Figure 8.4 we show these relative errors for the mesh shown in Figure 2.

We see that the errors of C1 and A1 decrease with the same rate as the

square of the error in the energy norm as predicted by theorems 6.1, 7.1. We

obtain from estimates (5.7) (5.8) that the error behaves like O((N(q))_Z/:3

).
This rate is indicated in Figure 8.4 too. We see that the asymptotic analysis

of previous section is completely applicable in the computed range.

F" l\rI! T t l 1 H ] ] IITIYTII . s G
= T Qi 1
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degrees of freedom

Figure 8.4 Relative error for unrefined mesh

In Figure 8.5 we show analogous results for the refined mesh. We see

that also here the accuracy of A, and C1 increases as the square of the

1

error measured in the energy norm. We are in the preasymptotic range of the
p-version, which can be interpreted as the h-p version. For large p, the

/3

errors again decrease with the rate O(N(q).2 ). The correspending slope is

indicated in Fig. 8.5.
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Figure 8.5 Relative error for the mesh with geometric refinement

We note that we have used here the classical p-version with the same

degree p of polynomials in all elements. By using low values of p close
to singularities and high values of p away from the singularities comparable

results can be obtained with a much smaller number of degrees of freedon.
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